Maschinenorientierte Programmierung

PC Inside	2021	Aufgaben	Name:

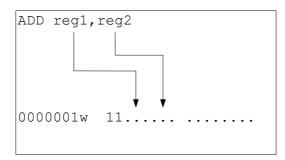
- 1. Die Inhalte der zehn 1-Byte-Speicherplätze ab Adresse 100H sollen in die zehn 1-Byte-Speicherplätze ab 125H kopiert werden.
- 2. Es soll die Summe aller Byte-Inhalte der Speicherplätze 18H bis 28H gebildet und das Ergebnis in 30H abgelegt werden.
- 3. Eine Zahl zwischen 0 und 8 sei im Speicherplatz 7H (und 8H) als Datenwort gegeben. Berechnen Sie durch ein geeignetes Maschinenprogramm die Fakultät dieses Wertes, und speichern Sie das Ergebnis in 20H und 21H ab. (Nur mnemonische Darstellung!) Es gilt bekanntlich 0! = 1 und $n! = 1 \cdot 2 \cdot ... \cdot n$.
- 4. a) Das folgende Maschinenprogramm ist von Zeile 4 bis 8 zu kodieren.
 - b) Nach Ausführung des Befehls in Zeile 9 liegen folgende Registerinhalte vor:

AX 00 E6

BX 00 20

CX FFFF

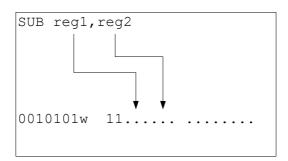
DX 80 32


Geben Sie an, wie das Overflow-Flag und das Carry-Flag bei der Abarbeitung der Programmzeilen 10 bis 13 gesetzt werden. Diese Angaben sind anschließend zu begründen.

O-Flag	C-Flag	Hexadezimale Kodierung	Mnemonik
		•	
			1 MOV BX,20H
			2 MOV SI,4
			3 MOV DI,-5
			4 SUB CX,CX
			5 MOV AL,[BX][DI][3]
			6 INC SI
			7 MOV DH,[20H][SI]
			8 MOV DL,[26H]
		7	9 DEC CX
			10 SUB CL,DH
			11 ADD DL,CL
			12 ADD DL,AL
			13 ADD AL,DL

<u>Informationen</u> ADD / SUB

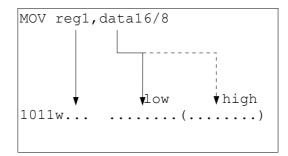
Addition und Subtraktion:


3 Zyklen

add register reg2 to reg1 (reg1:= reg1 + reg2)

	w:	1	oder	0
000	für	AX	oder	AL
001	für	CX	oder	CL
010	für	DX	oder	DL
011	für	ВХ	oder	${\tt BL}$
100	für	SP	oder	AΗ
101	für	ВP	oder	СН
110	für	SI	oder	DH
111	für	DI	oder	ВН

3 Zyklen

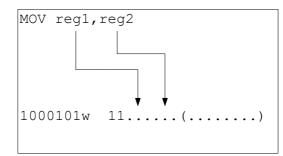


sub register reg2 from reg1
(reg1:= reg1 - reg2)

<u>Informationen</u> MOD , REG , R/M

Befehlsobjektcodes des MOV-Befehls bei verschiedenen Adressierungen:

Beispiel 1:


move data immediate into register

kopiere umittelbare Daten in ein Register

Allgemein:

Opcode|W|REG(.....)

Beispiel 1:

move data from 2nd to 1st register

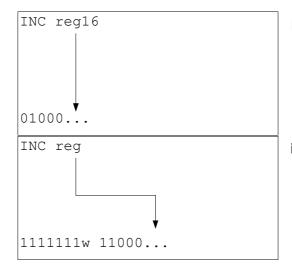
kopiere Daten vom 2. ins 1. Register

Allgemein:

Opcode|D|W| MOD|REG|R/M (.....(.....))

Abkürzungen:

D	destination	Ziel
W	word or byte	Wort oder Byte
MOD	mode	Modus
REG	register	Register
R/M	register or memory	Register oder Speicher

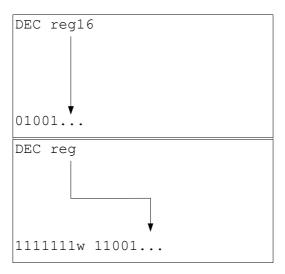

MOD-Feld und R/M-Feld:

MOD:	00	01	10	11	
R/M				w:	1 oder 0
000	BX + SI	BX + SI + data8	BX + SI + data16	000 für 2	AX oder AL
001	BX + DI	BX + DI + data8	BX + DI + data16	001 für (CX oder CL
010	BP + SI	BP + SI + data8	BP + SI + data16	010 für 1	DX oder DL
011	BP + DI	BP + DI + data8	BP + DI + data16	011 für 1	BX oder BL
100	SI	SI + data8	SI + data16	100 für :	SP oder AH
101	DI	DI + data8	DI + data16	101 für 1	BP oder CH
110	data16	BP + data8	BP + data16	110 für :	SI oder DH
111	BX	BX + data8	BX + data16	111 für 1	DI oder BH

Informationen INC / DEC

Erhöhen und Vermindern von 16/8-Bit-Registern:

2 Zyklen



increment register16

increment register8

	w:	1	oder	0
000	für	AX	oder	AL
001	für	CX	oder	CL
010	für	DX	oder	DL
011	für	ВX	oder	BL
100	für	SP	oder	AΗ
101	für	ΒP	oder	СН
110	für	SI	oder	DH
111	für	DI	oder	ВН

2 Zyklen

decrement register16

decrement register8